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　 本記事は総研大 統計科学コース Advent Calendar 2025 の 20 日目の記事です．

1.情報幾何学とは

　 情報幾何学とは，確率分布の族を多様体とみなし，その上で微分幾何学をするものです．統計的な

推論を幾何学の言葉を使って言い表すことができます（例えばつい最近書いた「最大エントロピー

原理の幾何学的解釈、そして情報幾何学へ」という記事（link）をご参照ください）．

　 微分幾何学の数学的な基本構成要素は

• 多様体 ℳ︀，

• Riemann 計量 𝑔，

です．𝑔 から Levi-Civita接続 ∇(0) が一意に定まります．Levi-Civita接続とは捩率 0，計量的な affine

接続のことです．情報幾何学では「計量的」という条件を外した affine 接続 ∇ を考え，条件を外す

代わりにそれと双対的な接続 ∇∗ とセットで考えるということをします:

𝑋𝑔(𝑌 , 𝑍) ≡ 𝑔(∇𝑋𝑌 , 𝑍) + 𝑔(𝑌 , ∇∗
𝑋𝑍). (1)

すなわち，情報幾何学とは (ℳ︀, 𝑔, ∇, ∇∗) の 4 つ組が織り成す世界を調べる学問です．

　 ℳ︀, 𝑔, ∇ の 3つが決まれば双対接続は一意に決まり，したがって情報幾何学の土台ができます．こ

の 3 つのうち∇ を直接定めるのでなく，対称(0,3)テンソル 𝐶 を用いて，

𝑔(∇(𝛼)
𝑋 𝑌 , 𝑍) ≔ 𝑔(∇(0)

𝑋 𝑌 , 𝑍) − 𝛼
2

𝐶(𝑋, 𝑌 , 𝑍) (𝛼 ∈ ℝ) (2)

のようにして affine 接続 ∇(𝛼) を作ることもできます．∇(𝛼) は捩率 0 で，更にその双対接続は ∇(−𝛼) 

なことが簡単な計算からわかります．

　 このアプローチとして最も有名なのは多様体をパラメータ 𝜃 をもつ分布族 ℳ︀ = {𝑝𝜃 | 𝜃 ∈ Θ ⊂

ℝ𝑑} としたとき，計量 𝑔 として Fisher 計量

𝑔𝜃(𝑋, 𝑌 ) = 𝔼𝜃[(𝑋𝑙𝜃)(𝑌 𝑙𝜃)] = ∫(𝑋 log 𝑝𝜃(𝑥))(𝑌 log 𝑝𝜃(𝑥))𝑝𝜃(𝑥) d𝑥, (3)

対称テンソル 𝐶 として Amari-Chentsov テンソル

𝐶𝜃(𝑋, 𝑌 , 𝑍) ≔ 𝔼𝜃[(𝑋𝑙𝜃)(𝑌 𝑙𝜃)(𝑍𝑙𝜃)] (4)

を用いるものです．これらから作られる ∇(𝛼) のうち，特別に 𝛼 = 1 のときを e-接続 ∇(𝑒)，𝛼 = −1 

のときを m-接続 ∇(𝑚) と呼びます．計算すると ∇(𝛼) についての Christoffel 記号は

Γ(𝛼)
𝑖𝑗𝑘(𝜃) = 1 − 𝛼

2
(𝐶𝜃)𝑖𝑗𝑘 + 𝔼𝜃[(𝜕𝑖𝜕𝑗𝑙𝜃)(𝜕𝑘𝑙𝜃)] (5)

で，e-接続，m-接続についてはそれぞれ

Γ(𝑒)
𝑖𝑗𝑘(𝜃) = 𝔼𝜃[(𝜕𝑖𝜕𝑗𝑙𝜃)(𝜕𝑘𝑙𝜃)], Γ(𝑚)

𝑖𝑗𝑘(𝜃) = 𝔼𝜃[
1
𝑝𝜃

(𝜕𝑖𝜕𝑗𝑝𝜃)(𝜕𝑘𝑙𝜃)] (6)
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なことが（更なる計算により）わかります．

　 𝛼 = ±1 が特別視されるのは，特に ℳ︀ として指数型分布族

𝑝(𝑥; 𝜃) = exp[∑
𝑛

𝑖=1
𝜃𝑖𝐹𝑖(𝑥) − 𝜓(𝜃)] (7)

を考えたとき，∇(𝑒), ∇(𝑚) についての曲率が 0 になる1からです．曲率が 0 ということは，∇(𝑒), ∇(𝑚) 

という視点から見ると指数方分布族は“まっすぐ”な空間であることを意味していて，このとき affine

座標系と呼ばれる，その座標系でみると Christoffel 記号がどこでも 0 になるような座標系が取れる

ことが示せます2．特に ∇(𝑒) についての affine 座標系は 𝜃 そのもので，この座標系で見ると例えば

測地線は文字通り直線になります3:

𝜃(𝑐(𝑡)) = 𝜃(𝑝) + 𝑡𝑣 (𝑐(0) = 𝑝,  𝑣 ∈ ℝ𝑛) (8)

他にも色々と望ましい性質を持つことがわかりますが，ここでは深入りしません．

　 さて，ℳ︀, 𝑔, ∇ の 3 つを決めるもう一つの方法として，ダイバージェンスという距離のような性質

を持った関数 𝒟︀ : ℳ︀ × ℳ︀ → ℝ を用いたものがあります．本記事では，この方法を紹介したいと思

います．

2.ダイバージェンスから導かれる双対構造

Definition 1

ℳ︀ を多様体とする．滑らかな関数 𝒟︀ : ℳ︀ × ℳ︀ → ℝ が ℳ︀ 上のダイバージェンスであるとは，

1.（非負性）𝒟︀(𝑝‖𝑞) ≥ 0，等号は 𝑝 = 𝑞 のとき，またそのときに限る．

2. 任意の 𝑝 ∈ 𝑀  と，そのまわりのチャート (𝑈, {𝑥𝑖}) について，ある正定値対称行列 (𝑔𝑖𝑗(𝑝))
𝑖𝑗
 

が存在し，𝑝 の近傍の任意の点 𝑞 ∈ 𝑈（𝑥(𝑞) = 𝑥(𝑝) + Δ𝑥）について

𝒟︀(𝑝‖𝑞) = 1
2

∑
𝑖,𝑗

𝑔𝑖𝑗(𝑝)(Δ𝑥)𝑖(Δ𝑥)𝑗 + 𝑜(‖Δ𝑥‖2). (9)

𝑝 ∈ 𝑀  まわりのチャートを (𝑈, {𝑥𝑖}) とし，ℳ︀ × ℳ︀ のチャートを

(𝑈 × 𝑈, 𝑥1, …, 𝑥𝑛, 𝑥1, …, 𝑥𝑛) (10)

のようにとります．順番がわかるように，後者の座標系にはダッシュをつけて表すことにします:

(𝑈 × 𝑈, 𝑥1, …, 𝑥𝑛, 𝑥′1, …, 𝑥′𝑛). (11)

また，次のような記法を用います:

𝜕𝑖𝒟︀(𝑝‖𝑝) ≔ 𝜕
𝜕𝑥𝑖 𝒟︀|

(𝑝,𝑝)

, 𝜕′
𝑖𝒟︀(𝑝‖𝑝) ≔ 𝜕

𝜕𝑥′𝑖 𝒟︀|
(𝑝,𝑝)

. (12)

定義の条件 2 から，𝜕𝑖𝒟︀(𝑝‖𝑝) = 𝜕′
𝑖𝒟︀(𝑝‖𝑝) = 0 がすぐにわかります．更に次が成り立ちます:

1一般論として，接続 ∇ について曲率 0 なら，その双対接続 ∇∗ についても曲率 0 であることが示せます．
2Euclid空間における直交座標系もそうでした．この意味で，affine座標系とは，局所的にEuclid空間的な性質をもっ

たものだと思えます．
3測地線方程式が d2𝜃𝑖

d𝑡2 = 0 という形になるからです．
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Proposition 2

𝑔𝑖𝑗(𝑝) = 𝜕′
𝑖𝜕′

𝑗𝒟︀(𝑝‖𝑝) = 𝜕𝑖𝜕𝑗𝒟︀(𝑝‖𝑝) = −𝜕𝑖𝜕′
𝑗𝒟︀(𝑝‖𝑝) (13)

Proof: 𝜄 : ℳ︀ → ℳ︀ × ℳ︀;  𝑝 ↦ (𝑝, 𝑝) とする．

0 = 𝜕′
𝑗𝒟︀(𝑝‖𝑝) = (𝜕′

𝑗𝒟︀ ∘ 𝜄)(𝑝) (14)

である．これが任意の 𝑝 で成り立つので，𝜕′
𝑗𝒟︀ ∘ 𝜄 = 0．両辺を 𝑥𝑖 で微分すると，連鎖律より

0 = ∑
𝑘

(𝜕𝑘𝜕′
𝑗𝒟︀(𝑝‖𝑝))(𝜕𝑖𝜄𝑘(𝑝)) + ∑

𝑘
(𝜕′

𝑘𝜕′
𝑗𝒟︀(𝑝‖𝑝))(𝜕𝑖𝜄𝑘(𝑝)) = 𝜕𝑖𝜕′

𝑗𝒟︀(𝑝‖𝑝) + 𝜕′
𝑖𝜕′

𝑗𝒟︀(𝑝‖𝑝). (15)

したがって

𝜕′
𝑖𝜕′

𝑗𝒟︀(𝑝‖𝑝) = −𝜕𝑖𝜕′
𝑗𝒟︀(𝑝‖𝑝). (16)

もう一つの等号も同様にしてわかる． ☐

Proposition 3

𝑔𝑖𝑗(𝑝) ≔ 𝜕′
𝑖𝜕′

𝑗𝒟︀(𝑝‖𝑝) = 𝜕𝑖𝜕𝑗𝒟︀(𝑝‖𝑝) = −𝜕𝑖𝜕′
𝑗𝒟︀(𝑝‖𝑝) (17)

によって ℳ︀ 上の Riemann 計量 𝑔，

Γ𝑖𝑗𝑘(𝑝) = −𝜕𝑖𝜕𝑗𝜕′
𝑘𝒟︀(𝑝‖𝑝), Γ∗

𝑖𝑗𝑘(𝑝) = −𝜕′
𝑖𝜕′

𝑗𝜕𝑘𝒟︀(𝑝‖𝑝) (18)

によって affine 接続 ∇，∇∗ がそれぞれ定まる．∇, ∇∗ は双対接続で，どちらも捩率 0．

Proof: 計量，接続を定めることは，座標に依らないこと（適切な座標変換則に従うこと）を確認す

れば良いが，これは単純な計算からわかる．∇, ∇∗ の捩率が 0 であることは 𝑖, 𝑗 の対称性から直ち

に従う．双対接続になっていることは，前命題の証明と同様に 𝜄(𝑝) = (𝑝, 𝑝) を用いて

𝜕𝑖𝑔(𝜕𝑗, 𝜕𝑘)|𝑝 = −𝜕𝑖(𝜕𝑗𝜕′
𝑘𝒟︀ ∘ 𝜄)|𝑝 = −𝜕𝑖𝜕𝑗𝜕′

𝑘𝒟︀(𝑝‖𝑝) − 𝜕′
𝑖𝜕𝑗𝜕′

𝑘𝒟︀(𝑝‖𝑝)

= Γ𝑖𝑗𝑘(𝑝) + Γ∗
𝑖𝑘𝑗(𝑝) = 𝑔(∇𝜕𝑖

𝜕𝑗, 𝜕𝑘)(𝑝) + 𝑔(𝜕𝑗, ∇∗
𝜕𝑖

𝜕𝑘)(𝑝)
(19)

より． ☐

　 これで，多様体 ℳ︀ とその上のダイバージェンス 𝒟︀ : ℳ︀ × ℳ︀ → ℝ≥0 を決めれば，計量 𝑔，affine

接続とその双対 ∇, ∇∗ が自然と定まることがわかりました．計量はダイバージェンスのTaylor展開

の 2 次，接続は 3 次の項と見ることもできて，計量は接ベクトルの長さ/角度などをみるもの，接続

はもう一歩踏み込んで接ベクトルの変化率をみるもの，という直感的な解釈とも整合しています．

3.具体例

パラメトライズされた分布族 ℳ︀ = {𝑝𝜃 : 𝒳︀ → ℝ>0 | 𝜃 ∈ Θ ⊂ ℝ𝑑} を考えます．Θ は開集合とし，条

件として

• 任意の 𝜃 ∈ Θ, 𝑥 ∈ 𝒳︀ で 𝑝𝜃(𝑥) > 0，

• 積分と微分は順序交換可能．例えば

∫ 𝜕
𝜕𝜃𝑖 𝑝𝜃(𝑥) d𝑥 = 𝜕

𝜕𝜃𝑖 ∫ 𝑝𝜃(𝑥) d𝑥. (20)

• 𝑥 ∈ 𝒳︀ を固定するごとに 𝜃 ↦ 𝑝𝜃(𝑥) は全単射（すなわち，ℳ︀ は識別可能である）
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この条件のもとで，ℳ︀ を 𝜃 を座標系とする多様体とみなします．今後，𝑝𝜃, 𝑝𝜃′ ∈ ℳ︀ の間のダイバー

ジェンス 𝒟︀(𝑝𝜃‖𝑝𝜃′) を 𝒟︀(𝜃 : 𝜃′) などと表すことにします．

3.1. KLダイバージェンス

Definition 4

KL ダイバージェンスとは

𝒟︀KL(𝜃 : 𝜃′) ≔ ∫ 𝑝𝜃(𝑥) log( 𝑝𝜃(𝑥)
𝑝𝜃′(𝑥)

) d𝑥. (21)

色々なところで見かける量ですが，例えばエントロピーとの関係は前掲記事の中核となるものでし

た．

Proposition 5

KL ダイバージェンスから導かれる

• 計量は Fisher 計量，

• 接続は e-接続/m-接続．

Proof:

𝑔𝑖𝑗 = 𝜕′
𝑖𝜕′

𝑗𝒟︀KL(𝜃 : 𝜃) = − ∫ 𝑝𝜃(𝜕𝑖𝜕𝑗 log 𝑝𝜃) d𝑥 = − ∫ 𝑝𝜃(−
(𝜕𝑖𝑝𝜃)(𝜕𝑗𝑝𝜃)

𝑝2
𝜃

+
𝜕𝑖𝜕𝑗𝑝𝜃

𝑝𝜃
) d𝑥

= ∫ 𝑝𝜃(𝜕𝑖𝑙𝜃)(𝜕𝑗𝑙𝜃) d𝑥 − ∫ 𝜕𝑖𝜕𝑗𝑝𝜃 d𝑥
⏟

=0

= 𝔼𝜃[(𝜕𝑖𝑙𝜃)(𝜕𝑗𝑙𝜃)],
(22)

Γ𝑖𝑗𝑘(𝜃) = −𝜕𝑖𝜕𝑗𝜕′
𝑘𝒟︀KL(𝜃 : 𝜃) = ∫(𝜕𝑖𝜕𝑗𝑝𝜃)(𝜕𝑘𝑙𝜃) d𝑥 = 𝔼𝜃[

1
𝑝𝜃

(𝜕𝑖𝜕𝑗𝑝𝜃)(𝜕𝑘𝑙𝜃)] = Γ(𝑚)
𝑖𝑗𝑘(𝜃), (23)

Γ∗
𝑖𝑗𝑘(𝜃) = −𝜕′

𝑖𝜕′
𝑗𝜕𝑘𝒟︀KL(𝜃 : 𝜃) = ∫(𝜕𝑘𝑝𝜃)(𝜕𝑖𝜕𝑗𝑙𝜃) d𝑥 = 𝔼𝜃[(𝜕𝑖𝜕𝑗𝑙𝜃)(𝜕𝑘𝑙𝜃)] = Γ(𝑒)

𝑖𝑗𝑘(𝜃). (24)

☐

3.2. 𝛼 ダイバージェンス

Definition 6

𝛼 ダイバージェンスとは，

𝒟︀𝛼(𝜃 : 𝜃′) ≔ 4
1 − 𝛼2 (1 − ∫ 𝑝(1−𝛼)/2

𝜃 𝑝(1+𝛼)/2
𝜃′ d𝑥). (25)

𝛼 = 0 で Hellinger 距離

ℋ︀(𝜃 : 𝜃′) = 1 − ∫ √𝑝𝜃(𝑥)𝑝𝜃′(𝑥) d𝑥 (26)

を定数倍したもの，𝛼 → 1 で KL ダイバージェンスの引数を逆にしたものに一致します:
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𝒟︀𝛼(𝜃 : 𝜃′) = 4
1 − 𝛼2 ∫ 𝑝𝜃′

(
1 − ( 𝑝𝜃

𝑝𝜃′
)

1−𝛼
2

)
 d𝑥 = 2

1 + 𝛼
∫ 𝑝𝜃′

2
1 − 𝛼(

1 − ( 𝑝𝜃
𝑝𝜃′

)
1−𝛼

2

)
 d𝑥

=
𝑡=1−𝛼

2 1
1 − 𝑡

∫ 𝑝𝜃′
1
𝑡
(1 − ( 𝑝𝜃

𝑝𝜃′
)

𝑡

) d𝑥 →
𝑡→0

− ∫ 𝑝𝜃′ log( 𝑝𝜃
𝑝𝜃′

) d𝑥 = 𝒟︀KL(𝜃′ : 𝜃).

(27)

同様の計算により 𝛼 → −1 で KL ダイバージェンス 𝒟︀(𝜃 : 𝜃′) に一致することがわかります．

Proposition 7

𝛼 ダイバージェンスから導かれる

• 計量は Fisher 計量，

• 接続は 𝛼 接続．

Proof:

𝑔𝑖𝑗 = 𝜕′
𝑖𝜕′

𝑗𝒟︀𝛼(𝜃 : 𝜃)

= 4
𝛼2 − 1

∫ 𝑝(1−𝛼)/2
𝜃 (𝛼 + 1

2
(𝜕𝑖𝜕𝑗𝑝𝜃)𝑝

(𝛼−1)/2
𝜃 + 𝛼2 − 1

4
(𝜕𝑖𝑝𝜃)(𝜕𝑗𝑝𝜃)𝑝

(𝛼−3)/2
𝜃 ) d𝑥

= ∫
(𝜕𝑖𝑝𝜃)(𝜕𝑗𝑝𝜃)

𝑝𝜃
d𝑥 = 𝔼𝜃[(𝜕𝑖𝑙𝜃)(𝜕𝑗𝑙𝜃)],

(28)

Γ∗
𝑖𝑗𝑘(𝜃) = −𝜕′

𝑖𝜕′
𝑗𝜕𝑘𝒟︀𝛼(𝜃 : 𝜃)

= 4
1 − 𝛼2 ∫[1 − 𝛼

2
(𝜕𝑘𝑝𝜃)𝑝

−(1+𝛼)/2
𝜃 ×

(𝛼 + 1
2

(𝜕𝑖𝜕𝑗𝑝𝜃)𝑝
(𝛼−1)/2
𝜃 + 𝛼2 − 1

4
(𝜕𝑖𝑝𝜃)(𝜕𝑗𝑝𝜃)𝑝

(𝛼−3)/2
𝜃 ) d𝑥]

= ∫(𝜕𝑖𝜕𝑗𝑝𝜃)
𝜕𝑘𝑝𝜃
𝑝𝜃

d𝑥 + 𝛼 − 1
2

∫
(𝜕𝑖𝑝𝜃)(𝜕𝑗𝑝𝜃)(𝜕𝑘𝑝𝜃)

𝑝2
𝜃

d𝑥

= ∫(𝜕𝑖𝜕𝑗𝑙𝜃 + (𝜕𝑖𝑙𝜃)(𝜕𝑗𝑙𝜃))(𝜕𝑘𝑙𝜃)𝑝𝜃 d𝑥 + 𝛼 − 1
2

(𝐶𝜃)𝑖𝑗𝑘

= 𝔼𝜃[(𝜕𝑖𝜕𝑗𝑙𝜃)(𝜕𝑘𝑙𝜃)] + 𝛼 + 1
2

(𝐶𝜃)𝑖𝑗𝑘 = Γ(−𝛼)
𝑖𝑗𝑘(𝜃).

(29)

Γ𝑖𝑗𝑘(𝜃) についても同様の計算によって Γ(𝛼)
𝑖𝑗𝑘(𝜃) と一致することがわかる． ☐

4.最後に

　 本記事ではダイバージェンスから双対構造が導かれること，その具体例としてKLダイバージェン

スと 𝛼 ダイバージェンスを取り上げました．ℳ︀, 𝒟︀ : ℳ︀ × ℳ︀ → ℝ という 2つ（空間である多様体は

何はともあれ指定せざるを得ないので，実質 1 つ）さえ指定すれば情報幾何学を始められるという

のは非常に嬉しそうです．

　 一方で，今度はダイバージェンスをどう選ぶか，という問題が生まれます．このアプローチとし

てある不変性を満たすようなものを選ぶというものがあり，例えば[1]の第 4章で紹介されています．

本記事で興味を持った方は，ぜひこちらをお読みください．
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